

TransRe Forum

(Literaturhaus München)

April 17th 2024

"It's all about AI - opportunities and challenge swithin regulations in artificial intelligence"

Andy Schweiger, SVP Cyber Security, DEKRA

AI in speculative figures

75% AI application within commercial software applications

\$15.7 trillion

AI could contribute to the global economy by 2030 - Source: <u>PWC sizing the prize</u>

in the next 5-7 years will increase their cash flow by more than 120% by 2030

of companies assume that they will achieve competitive advantages through AI

the tension between AI & cyber security

	AI	Cybersecurity
Potential for improvement	 Automation of security solutions (threat detection, incident response) Improved anticipation, proactive responses to threats Accelerated pattern recognition 	 Improved learning about attack patterns Bridging or resolving personnel bottlenecks
New risks	 Manipulation of automation Relatively high susceptibility of training data to interference 	 Too strong a focus on machine support Manipulation and sabotage of security solutions can be automated

Global approaches/measures for AI regulations

Overview

EU - AI Act

India - "Non-regulatory" approach to AI

China - AI Governance Framework G7 - AI Code of Conduct US - Executive Order

TransRe Forum - Literaturhaus München, April 2024 -Andy Schweiger, Senior Vice President, CFA Cyber Security, DEKRA

Al standardization - a major "construction"...

>

Compass for navigating through a diverse standard landscape

30

Standards in **Development**

These standards originate from a heterogeneous landscape of standardization institutions that need to be must be classified in the specific context of companies!

EU-AI Act of 9.12.2023 - key content

Horizontal legislation on AI regulation within the EU, 5 main pillars:

Risk classification & neutral testing obligation

Binding regulations (general AI)

Special obligations for simulation of human behavior

Fines for noncompliance

EU authority structure

The goal: AI safely and responsibly in society and the environment!

AI that supports people in a meaningful, value-adding way and must not endanger them!

ethically sound and safe Applications for our society

fair, transparent, competitionoriented & growthpromoting

A View onto our work bench ...

TRAININGS & PRE-ASSESSMENTS

KI Training & Consulting

- ▶ AI risk awareness
- Al regulations and standards
- Trustworthiness& ethics
- Maturity assessment (DEKRA KI maturity level scoring)

ASSESSMENTS

AI tests

KI Audits & Certification

- Data Quality (ISO 5259)
- ► Model Robustness (ISO 24029)
- ► Al Bias & Fairness (ISO 24027)
- ▶ Al cyber security

- ► Management systems (ISO 42001)
- ► AI risk management (ISO 23894)
- ► Road vehicle safety & AI (ISO 8800)
- ► Data Labeling (ISO 5259-4)
- ▶ A-Spice machine learning

BACKUP

other sources with noteworthy considerations on AI evolutions ...

please use internally only

asteriskmag June 2023 Issue exclusively on

Andrew Marantz March 2024 Issue on AI Doomsayers

by 2030 - AI* to account for over 10% of GDP worldwide**!?

Sources: * PWC sizing the prize

** Forecasts World Bank, IMF & OECD

...This is not just about regulation ... Why do we need AI assessments and certifications?

Conformity to new standards

- Violations are severely punished
- Assumption of liability in the event of of compliance violations

Quality assurance and reduction of economic risks

 Incorrectly functioning AI can result in considerable economic damage due to incorrect decisions, consequential damage and liability

Building trust with customers and users

- Prove that your solution is secure and sustainable and gain the trust of customers and users
- Set yourself apart from the from the competition

Testing service providers are part of the solution

... when it comes to protecting our society and its companies

- globally binding rules
- Consideration of TIC companies in conformity assessments (Art. 6 (1))/Art. 43 (3)
- Integration TIC context in Art. 52c - 52d

- neutral know-how
- Digital protection mechanisms
- Confidence in new products & services

our requirement for the legislative

- **process:** Strong state rules for inspection obligations
- Clear legal requirements on the AI testing obligation
- Binding guidelines for the accreditation of neutral third parties (TIC provider)

on the limitations of artificial intelligence

the salt trap on autonomous vehicles

One way to disrupt a self-driving car is to simply draw a circle around it. James Bridle custom-built a neural network vision system and attached it to his car.

To demonstrate his own computer vision system's limitation, he drew two concentric circles: the inner circle was a solid line, and the outer circle was a dashed line. When he drove his self-made, self-driving car complete with cameras and ML algorithms, he could drive into the circle but not out of it (see Figure 2-8). This is because the car confused the circles with lane markings. A dashed line is a road marking that tells drivers (human and autonomous) that it is okay to change lanes; solid lines indicate that one must not change lanes.

Source: Siva Kumar, Ram Shankar; Anderson, Hyrum. Not with a Bug, But with a Sticker: Attacks on Machine Learning Systems and What To Do About Them (English Edition) (p.49). Wiley.

The biggest fears

